Modul Pemikiran Sains Keusahawanan Untuk Pelajar Tahun Lima Dalam Pendidikan STEM

Keywords: pendekatan isu sosiosaintifik, peta pemikiran roda, pemikiran sains keusahawanan, pendidikan STEM, modul

Abstract

Kajian ini dijalankan untuk i) menentukan kesahan, kebolehpercayaan, kebolehlaksanaan modul berasaskan pendekatan isu sosiosaintifik berbantukan peta pemikiran roda (PISPP), dan ii) menilai kesannya terhadap pemikiran sains keusahawanan pelajar tahun lima dalam pendidikan STEM. Fasa pertama kesahan modul dilakukan dengan menggunakan khidmat lima orang pakar penilai dan 30 orang pelajar tahun lima. Data diperoleh melalui maklum balas responden dalam soal selidik 5 poin skala Likert dan ujian Pemikiran Sains Keusahawanan. Fasa kedua adalah penilaian melalui reka bentuk kajian kuasi eksperimental dengan Ujian Pra-Pasca Kumpulan Kawalan Tidak Setara. Seramai 60 orang pelajar tahun lima yang terbahagi kepada dua kumpulan iaitu kumpulan PISPP (n=30) dan kumpulan kawalan (n=30). Keputusan penilaian modul PISPP menunjukkan nilai kesahan yang baik dan kebolehpercayaan alfa Cronbach yang boleh diterima iaitu antara .74 dan .89 dengan nilai keseluruhan .92. Pelajar menunjukkan tahap penerimaan yang tinggi (m=4.53) terhadap aktiviti-aktiviti dalam Modul PISPP. Respon secara lisan menunjukkan kesesuaian dan penerimaan modul dalam kalangan pelajar. Dapatan ujian-t tak bersandaran membuktikan kesan positif yang signifikan terhadap kelima-lima konstruk dalam pemikiran sains keusahawanan. Tuntasnya, kesemua dapatan ini menunjukkan bahawa Modul PISPP menyediakan satu modul pengajaran dan pembelajaran STEM yang sah, boleh dipercayai dan dilaksanakan, dan berkesan dalam meningkatkan pemikiran sains keusahawanan bagi pelajar tahun lima.

Downloads

Download data is not yet available.

References

Ahmad, J., & Siew, N. M. (2021). Development of a children entrepreneurial science thinking test for STEM education. Journal of Baltic Science Education, 20(4), 528–545.

Ambo, N. (2019). Kesan pembelajaran sains berasaskan projek dan pendekatan STEM terhadap lima dimensi sifat kreativiti saintifik murid tahun lima. [Tesis Doktor Falsafah, Universiti Malaysia Sabah].

Bacigalupo, M., Kampylis, P., Punie, Y., & Van den Brande, G. (2016). EntreComp: The entrepreneurship competence framework. Publications Office of the European Union. https://doi.org/10.2791/593884

Bahagian Pembangunan Kurikulum. (2019). Dokumen standard kurikulum dan pentaksiran sains tahun 5. Kementerian Pendidikan Malaysia.

Bengston, D. N. (2016). The futures wheel: A method for exploring the implications of social–ecological change. Society and Natural Resources, 29(3), 374–379. https://doi.org/10.1080/08941920.2015.1054980

Birmingham, D., & Barton, A. C. (2014). Putting on a green carnival: Youth taking educated action on socioscientific issues. Journal of Research in Science Teaching, 51(3), 286–314. https://doi.org/10.1002/tea.21127

Bloom, B. S. (1956). Taxonomy of educational objectives, Handbook 1: Cognitive domain (2nd ed.). David McKay Company. https://doi.org/10.1300/J104v03n01_03

Branch, R. M. (2010). Instructional design: The ADDIE approach. Springer. https://doi.org/10.4135/9781412958806.n258

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(77), 77–101.

Carlton, D. J., Kicklighter, J. R., Jonnalagadda, S. S., & Shoffner, M. B. (2000). Design develop and formative evaluation for adult program. Journal of The American Dietetic Association, 100(5), 555–563.

Chua, Y. P. (2011). Kaedah dan statistik penyelidikan: Kaedah penyelidikan. Mcgraw-Hill Education.

Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. Routledge.

Cohen, R. J., & Swedlik, M. E. 2018. Psychological testing and assessment: An introduction to tests and measurement. Guidebook for Clinical Psychology Interns (9th ed.). McGraw-Hill Education.

Darmaji, Kurniawan, D. A., & Irdianti. (2019). Physics education students’ science process skills. International Journal of Evaluation and Research in Education, 8(2), 293–298. https://doi.org/10.11591/ijere.v8i2.28646

Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287. https://doi.org/10.1002/(sici)1098-237x(200005)84:3<287::aid-sce1>3.3.co;2-1

Fereday, J., & Muir-Cochrane, E. (2006). Demonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme Development. Interdisciplinary Journal of Qualitative Methods, 5(1), 80–92. https://doi.org/10.1177/160940690600500107

Gay, L. R., & Airasian, P. W. (2003). Educational research: Competencies or analysis and applications. Prentice Hall.

Glenn, J. (1972). Futurizing teaching vs. futures courses. Social Science Record, 9(3), 26–29.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Prentice Hall.

Ho, H.-C., Wang, C.-C., & Cheng, Y.-Y. (2013). Analysis of the scientific imagination process. Thinking Skills and Creativity, 10, 68–78.

Jones, M. G., & Brader-Araje, L. (2002). The impact of constructivism on education: Language, discourse, and meaning. American Communication Journal, 5(3), 1–10.

Junus, I. S., Santoso, H. B., Isal, R. Y. K., & Utomo, A. Y. (2021). Usability evaluation of the student centered e-learning environment. International Review of Research in Open and Distributed Learning, 16(4), 62–82. https://doi.org/https://doi.org/10.19173/irrodl.v16i4.2175

Karlsson, C., Rickardsson, J., & Wincent, J. (2021). Diversity, innovation and entrepreneurship: where are we and where should we go in future studies? In Small Business Economics (Vol. 56, Issue 2, pp. 759–772). https://doi.org/10.1007/s11187-019-00267-1

Khishfe, R., Alshaya, F. S., BouJaoude, S., Mansour, N., & Alrudiyan, K. I. (2017). Students’ understandings of nature of science and their arguments in the context of four socio-scientific issues. International Journal of Science Education, 39(3), 299–334. https://doi.org/10.1080/09500693.2017.1280741

Kinslow, A. T., & Sadler, T. D. (2018). Making science relevant: Using socio-scientific issues to foster critical thinking. The Science Teacher, 86(1), 40–45. www.nsta.org/highschool

Mutvei, A., Lönn, M., & Mattsson, J.-E. (2017). Development of observation skills in science education for enhanced understanding. ESERA 2017 (European Science Education Research Association), Dublin, August 21-25, 2017.

Nam, Y., & Chen, Y. C. (2017). Promoting argumentative practice in socio-scientific issues through a science inquiry activity. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3431–3461. https://doi.org/10.12973/eurasia.2017.00737a

Noah, S.M., & Ahmad, J. (2005). Module development: How to develop practice module and academic module. Univerisiti Putra Malaysia.

Buang, N. A., Halim, L., & Subahan, T. M. M. (2009). Understanding the thinking of scientists entrepreneurs: Implications for science education in Malaysia. Journal of Turkish Science Education, 6(2), 3–11.

Owens, D. C., Sadler, T. D., & Zeidler, D. L. (2017). Controversial issues in the science classroom. Phi Delta Kappan, 99(4), 45–49. https://doi.org/10.1177/0031721717745544

Pascual-Leone, J., & Johnson, J. (2005). A dialectical constructivist view of developmental intelligence. Handbook of Understanding and Measuring Intelligence, 177–201.

Piaget, J. (1976). Piaget’s theory. In Piaget and His School (pp. 11–23). https://doi.org/10.1007/978-3-642-46323-5_2

Rahman, M.S.A. (2020). Pendekatan berasaskan sosio-saintifik berbantukan peta pemikiran masa hadapan terhadap lima konstruk pemikiran masa hadapan pelajar. [Tesis Doktor Falsafah, Universiti Malaysia Sabah].

Saavedra, A. R., & Opfer, V. D. (2012). Learning 21st-century skills requires 21st-century teaching. Phi Delta Kappan, 94(2), 8–13. https://doi.org/10.1177/003172171209400203

Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. https://doi.org/10.1002/tea.20009

Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71–93. https://doi.org/10.1002/sce.20023

Sadler, T. D., Foulk, J. A., & Friedrichsen, P. J. (2017). Evolution of a model for socio-scientific issue teaching and learning. International Journal of Education in Mathematics Science and Technology, 5(2), 75–87.

Sekaran, U., & Bougie, R. (2010). Research methods for business: A skill building approach (5th ed.). John Willey & Sons Ltd.

Sjøberg, S. (2007). Contructivism and learning. In International Encyclopaedia of Education (3rd ed.). Elsevier. https://doi.org/10.1134/S1061933X16060144

Swartz, R. J., & Parks, S. (1994). Infusing the teaching of critical and creative thinking into content instruction: A lesson design handbook for the elementary grades. Critical Thinking Books and Software.

Swartz, R. J., & Parks, S. 1994. Infusing the teaching of critical and creative thinking into content instruction: A lesson design handbook for the elementary grades. Critical Thinking Books and Software.

Syukri, M., Halim, L., & Meerah., T.S.M. (2013). Pendidikan STEM dalam entrepreneurial science thinking “ESciT”: Satu perkongsian pengalaman dari UKM untuk Aceh. Aceh Development International Conference 2013, 105–112.

Taherdoost, H. 2016. Validity and reliability of the research instrument; How to test the validation of a questionnaire / survey in a research. International Journal of Academic Research in Management, 5(3), 28–36.

Topçu, M. S., Foulk, J. A., Sadler, T. D., Pitiporntapin, S., & Atabey, N. (2018). The classroom observation protocol for socioscientific issue-based instruction: development and implementation of a new research tool. Research in Science & Technological Education, 36(3), 302–323. https://doi.org/10.1080/02635143.2017.1399353

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Harvard University Press. https://doi.org/10.1016/S0140-6736(10)60669-1

Zeidler, D. L. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26. https://doi.org/10.1007/s11422-014-9578-z

Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49–58. https://doi.org/10.1007/bf03173684

Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching, 46(1), 74–101. https://doi.org/10.1002/tea.20281

Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377. https://doi.org/10.1002/sce.20048

Zeidler, Dana L; Keefer, M. (2003). The role of moral reasoning on socioscientific issues and discourse in science education. Kluwer Academic Pubishers.

Published
2022-01-10
How to Cite
Ahmad, J. and Siew, N. M. (2022) “Modul Pemikiran Sains Keusahawanan Untuk Pelajar Tahun Lima Dalam Pendidikan STEM”, Malaysian Journal of Social Sciences and Humanities (MJSSH), 7(1), pp. 99 - 117. doi: 10.47405/mjssh.v7i1.1248.
Section
Articles