Issues and Challenges in Teaching Secondary School Quantum Physics with Integrated STEM Education in Malaysia

  • Laurah Markus Faculty of Psychology and Education, Universiti Malaysia Sabah (UMS)
  • Stephanie Sungkim Faculty of Psychology and Education, Universiti Malaysia Sabah (UMS)
  • Mohd. Zaki Bin Ishak Faculty of Psychology and Education, Universiti Malaysia Sabah (UMS)
Keywords: integrated stem education, quantum physics, learning and facilitation, secondary school

Abstract

The emphasis on STEM education in the physics curriculum moves toward addressing the 21st-century demands, but its implementation is fraught with issues and challenges. This paper exposes teachers’ and students’ concerns and problems with integrated STEM education implementation and relates them to the anticipated problem in quantum physics (QP) learning and facilitation (L&F) in secondary school. The QP L&F challenges include the odd ontological worldview and abstractness of concepts, which have created serious misconceptions among teachers and students. A solution is proposed to address this difficulty, including applying an interactive simulation and a hands-on experiment. This paper also proposes a theoretical framework for developing an instructional module to cater to meaningful QP learning with integrated STEM elements. The proposed theoretical framework has several advantages, including guidance in planning an instructional module applicable to classroom activities and explaining the topic using an inquiry-based learning (IBL) approach with learning activities coordinated using the 5E Instructional Model. Nonetheless, further research is necessary to study the instructional module’s development, usability, and L&F effectiveness in the classroom.

Downloads

Download data is not yet available.

References

Ab Rahman, N. F., & Phang, F. A. (2012). Exploring the epistemic equity among physics teachers’ agency to support inclusivity in learning Ab Rahman, N. F.

Abdullah, A. H., Hussin, R. H. S. R., Rahman, S. N. S. A., Hamzah, M. H., Kohar, U. H. A., & Juhazren Junaidi. (2017). Teachers’ Readiness in Implementing Science, Technology, Engineering and Mathematics (STEM) Education from the Cognitive, Affective and Behavioural Aspects. IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), December, 6–12.

Academy of Sciences Malaysia. (2015). Science Outlook action towards vision. In BMC Public Health (Vol. 5, Issue 1). Ministry of Science, Technology And Innovation.

Academy of Sciences Malaysia. (2017). Science Outlook Converging Towards Progressive Malaysia 2050. Ministry of Science, Technology And Innovation.

Amelia, N., & Lilia Halim. (2019). Cabaran Pengintegrasian Pendidikan STEM Dalam Kurikulum Malaysia. Seminar Wacana Pendidikan, September, 1–10.

Anealka Aziz. (2018). Education 4.0 Made Simple: Ideas For Teaching. International Journal of Education and Literacy Studies, 6(3), 92.

Angelo, M. D., Garuccio, A., Romano, F., Lena, F. Di, Incecco, M. D., Moro, R., Regano, A., & Scarcelli, G. (2014). Frontiers of Fundamental Physics and Physics Education Research. 145, 407–416. https://doi.org/10.1007/978-3-319-00297-2

Asikainen, M. A., & Hirvonen, P. E. (2009). A study of pre- and inservice physics teachers’ understanding of photoelectric phenomenon as part of the development of a research-based quantum physics course. American Journal of Physics. https://doi.org/10.1119/1.3129093

Aydın, B., Melek, M., Alan, B., & Sağlam, S. (2017). Combining the old and the new: Designing a curriculum based on the taba model and the global scale of English. Dil ve Dilbilimi Çalışmaları Dergisi, 13(1), 304–320.

Bednarik, R. (2002). Evaluation of Educational Environments. The TUP Model. University of Joensuu.

Bednarik, R., Gerdt, P., Miraftabi, R., & Tukiainen, M. (2004). Development of the TUP model - Evaluating educational software. Proceedings - IEEE International Conference on Advanced Learning Technologies, ICALT 2004, 699–701. https://doi.org/10.1109/ICALT.2004.1357627

Bøe, M. V., Henriksen, E. K., & Angell, C. (2018). Actual versus implied physics students: How students from traditional physics classrooms related to an innovative approach to quantum physics. Science Education, 102(4), 649–667. https://doi.org/10.1002/sce.21339

Bungum, B., Henriksen, E. K., Angell, C., Tellefsen, C. W., & Bøe, M. V. (2015). ReleQuant – Improving teaching and learning in quantum physics through educational design research. Nordic Studies in Science Education, 11(2), 153. https://doi.org/10.5617/nordina.2043

Bunyamin, M. A. H. (2015). Pendidikan STEM Bersepadu : Perspektif Global , Perkembangan Semasa di Malaysia, dan Langkah Kehadapan. The Bulletin of the Johor Association of Science and Mathematics Education, 25(1)(November 2015), 1–6.

Bybee, R. W. (2013). The case for STEM Education Challenges and Opportunities (J. Horak, A. Cooke, & W. Rubin (eds.)). NSTA Press.

Cataloglu, E., & Robinett, R. W. (2002). Testing the development of student conceptual and visualization understanding in quantum mechanics through the undergraduate career. American Journal of Physics. https://doi.org/10.1119/1.1405509

Cataloglu, Erdat. (2002). Development and Validation of an Achievement Test in Introductory Quantum Mechanics: the Quantum Mechanics Visualization Instrument (Qmvi). May, 196.

Chedi, J. M. (2017). A Preliminary Review on Needs Analysis and Delphi Technique : Effective Tools for Data Collection. Journal of Asian Vocational Education and Training, 10(2011), 44–52.

Chin, H., Thien, L. M., & Chew, C. M. (2019). The Reforms of National Assessments in Malaysian Education System. Journal of Nusantara Studies (JONUS), 4(1), 93–111. https://doi.org/http://dx.doi.org/10.24200/jonus.vol4iss1pp93-111

Chuan, K. K., Choy, C. S., Kasron, Nor Rizah Bongkek, J., & Mohd Khairul Anuar; Pradeep Kumar Chakrabarty. (2020). Chapter 7 Quantum Physics. In Norazlina Binti Hamat; Kanageaswarry Thangarajan (Ed.), Dual Language Program Physics Form 5 KSSM (pp. 222–247). Penerbit Bestari Sdn. Bhd.

Cuppari, A., Rinaudo, G., Robutti, O., & Violino, P. (1997). Gradual introduction of some aspects of quantum mechanics in a high school curriculum. Physics Education, 32(5), 302–308. https://doi.org/10.1088/0031-9120/32/5/012

Dangur, V., Avargil, S., Peskin, U., & Dori, Y. J. (2014). Learning Quantum Chemistry via Visual-conceptual Approach: Students’ Bidirectional Textual and Visual Understanding Vered. Chemistry Education Research and Practice, 15(3), 297–310.

Dewey, J. (1938). Logic: The Theory of Inquiry. Henry Holt. https://doi.org/10.5040/9781472547262.ch-005

Didiş, N., EryIlmaz, A., & Erkoç, Ş. (2014). Investigating students’ mental models about the quantization of light, energy, and angular momentum. Physical Review Special Topics - Physics Education Research, 10(2), 1–28. https://doi.org/10.1103/PhysRevSTPER.10.020127

Dutt, A. (2011). Making the transition from classical to quantum physics. Teaching Science, 57(4), 33–36.

Edy Hafizan, M. S., Ihsan, I., & Lilia, H. (2017). STEM education in Malaysia: Policy, trajectories and initiatives. Policy Trajectories and Initiatives in STEM Education, 122–133.

EL-Deghaidy, H., Mansour, N., Alzaghibi, M., & Alhammad, K. (2017). Context of STEM Integration in Schools: Views from In-service Science Teachers. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 2459–2484. https://doi.org/10.12973/eurasia.2017.01235a

English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 1–8. https://doi.org/10.1186/s40594-016-0036-1

Escalada, L., Rebekki, N. S., & Zollman, D. A. (2004). Student Explorations of Quantum Effects in LEDs and Luninescent Devices. The Physics Teachers, 42(3), 173–179. https://doi.org/https://doi.org/10.1119/1.1664385

Farihah Mohd Jamel, Mohd Norawi Ali, & Nur Jahan Ahmad. (2019). The needs analysis in game-based STEM module development for KSSM science teachers. International Journal of Recent Technology and Engineering, 8(3), 6622–6628. https://doi.org/10.35940/ijrte.C5655.098319

Francisco, A. R. L. (2013). On Constructivism. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004

Gonen, S. (2006). Effects of concept maps, semantic networks and computer simulations on students’ understanding of quantum physics. Journal of Science Education, 7(2), 95–98.

Habibbulloh, M. (2019). Effectiveness of the guided discovery model based virtual lab PhET toward mastery students’ concept on topic Photoelectric Effect. Science Education and Application Journal. https://doi.org/10.30736/seaj.v1i1.100

Hadzidaki, P., Kalkanis, G., & Stavrou, D. (2000). Quantum mechanics: A systemic component of the modern physics paradigm. Physics Education, 35(6), 386–392. https://doi.org/10.1088/0031-9120/35/6/302

Harasim, L., & Harasim, L. (2018). Constructivist Learning Theory. In Learning Theory and Online Technologies. https://doi.org/10.4324/9781315716831-5

Henriksen, E. K., Bungum, B., Angell, C., Tellefsen, C. W., Frågåt, T., & Bøe, M. V. (2014). Relativity, quantum physics and philosophy in the upper secondary curriculum: Challenges, opportunities and proposed approaches. Physics Education. https://doi.org/10.1088/0031-9120/49/6/678

Hubber, P. (2006). Year 12 students’ mental models of the nature of light. Research in Science Education, 36(4), 419–439. https://doi.org/10.1007/s11165-006-9013-x

Johansson, A., Andersson, S., Salminen-Karlsson, M., & Elmgren, M. (2018). “Shut up and calculate”: the available discursive positions in quantum physics courses. Cultural Studies of Science Education, 13(1), 205–226. https://doi.org/10.1007/s11422-016-9742-8

Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An Instructional Model for a Radical Conceptual Change Towards Quantum Mechanics Concepts. Science Education, 87(2), 257–280. https://doi.org/10.1002/sce.10033

Kamsi, N. S., Radin Firdaus, R. B., Abdul Razak, F. D., & Ridha Siregar, M. (2019). Realizing Industry 4.0 Through STEM Education: But Why STEM Is Not Preferred? IOP Conference Series: Materials Science and Engineering, 506(1), 0–7. https://doi.org/10.1088/1757-899X/506/1/012005

Kızılcık, H. Ş., & Yavaş, P. Ü. (2016). Pre-service Physics Teachers’ Opinions about the Difficulties in Understanding Introductory Quantum Physics Topics. Journal of Education and Training Studies, 5(1), 101. https://doi.org/10.11114/jets.v5i1.2012

Kohnle, A. (2010). Developing and evaluating animations for teaching quantum mechanics concepts. European Journal of Physics, 31(6), 1441–1455. https://doi.org/10.1088/0143-0807/31/6/010

Kohnle, A., Cassettari, D., Edwards, T. J., Ferguson, C., Gillies, A. D., Hooley, C. A., Korolkova, N., Llama, J., & Sinclair, B. D. (2012). A new multimedia resource for teaching quantum mechanics concepts. American Journal of Physics, 80(2), 148–153. https://doi.org/10.1119/1.3657800

Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & Joolingen, W. R. Van. (2018). Key topics for quantum mechanics at secondary schools : a Delphi study into expert opinions. International Journal of Science Education, 41(3). https://doi.org/10.1080/09500693.2018.1550273

Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & Van Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education. Physical Review Physics Education Research, 13(1). https://doi.org/10.1103/PhysRevPhysEducRes.13.010109

López-Incera, A., & Dür, W. (2019). Entangle me! A game to demonstrate the principles of quantum mechanics. American Journal of Physics, 87(2), 95–101. https://doi.org/10.1119/1.5086275

Malgieri, M., Onorato, P., & Ambrosis, A. De. (2017). Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school. Physical Review Physics Education Research, 13(1), 010101-1–25. https://doi.org/10.1103/PhysRevPhysEducRes.13.010101

Mansyur, J., & Darsikin, D. (2016). Enhancing Direct Instruction on Introductory Physics for Supporting Students’ Mental-Modeling Ability. International Education Studies, 9(6), 32. https://doi.org/10.5539/ies.v9n6p32

Marshman, E., & Singh, C. (2015). Framework for understanding the patterns of student difficulties in quantum mechanics. Physical Review Special Topics - Physics Education Research. https://doi.org/10.1103/PhysRevSTPER.11.020119

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522

Maruthai, J. (2019). Stem Education in Malaysia: Barrier and challenges. Proceedings International Conference on Global Education VII “Humanising Technology For IR 4.0, 2017, 1–2.

Mashhadi, A., & Woolnough, B. (1996). Cognitive mapping of advanced level physics students’ conceptions of quantum physics. Conference on Educational Research (Australian Association for Research in Education), Singapore, 25.

Mashhadi, A., & Woolnough, B. (1999). Insights into students’ understanding of quantum physics: Visualizing quantum entities. European Journal of Physics, 20(6), 511–516. https://doi.org/10.1088/0143-0807/20/6/317

McKagan, S. B., Handley, W., Perkins, K. K., & Wieman, C. E. (2007). A research-based curriculum for teaching the photoelectric effect. American Journal of Physics, 77(1), 87–94. https://doi.org/10.1119/1.2978181

McKagan, S. B., Handley, W., Perkins, K. K., & Wieman, C. E. (2009). A research-based curriculum for teaching the photoelectric effect. American Journal of Physics, 77(1), 87–94. https://doi.org/10.1119/1.2978181

McKagan, S. B., Perkins, K. K., Dubson, M., Malley, C., Reid, S., LeMaster, R., & Wieman, C. E. (2008). Developing and researching PhET simulations for teaching quantum mechanics. American Journal of Physics. https://doi.org/10.1119/1.2885199

McKillip, J. (1987). Need analysis: Tools for the human services and education. In Applied Social Research Methods Series, Volume 10. SAGE Publications, Inc.

Michelini, M., Ragazzzon, R., Santi, L., & Alberto Stefanel. (2004). Implementing a Formative Module on Quantum Physics for Pre- Service Teacher Training. Quality Development in the Teacher Education and Training, 429–435.

Michelini, M., Santi, L., & Stefanel, A. (2014). Teaching modern physics in secondary school. Proceedings of Science, 15-18-July(July), 1–10. https://doi.org/10.22323/1.224.0231

Michelini, M., Santi, L., Stefanel, A., & Meneghin, G. (2002). A resource environment to introduce quantum physics in secondary school. Proceedings International MPTL-7.

MOE, K. P. M. (2016a). Buku Penerangan KSSM. Bahagian Pembangunan Kurikulum Kementerian Pendidikan Malaysia.

MOE, K. P. M. (2016b). Panduan Pelaksanaan Sains, Teknologi, Kejuruteraan, dan Matematik (STEM) dalam Pengajaran dan Pembelajaran. Kementerian Pendidikan Malaysia.

MOE, K. P. M. (2018). Dokumen Standard Kurikulum dan Pentaksiran KSSM Fizik Tingkatan 4 dan 5. Kementerian Pendidikan Malaysia.

MOE, K. P. M. (2019). Jumlah Pelajar Mengambil Sains,Teknologi, Kejuruteraan dan Matematik (STEM) Semakin Merosot. Sektor Pusat Dokumentasi Bahagian Perancangan Dan Penyelidikan Dasar Pendidikan, 02, 1–2.

Mohd Paris Saleh & Saedah Siraj. (2016). Analisis Keperluan Pembangunan Model Pengajaran M-Pembelajaran Mata Pelajaran Sejarah Sekolah Menengah. Jurnal Kurikulum & Pengajaran Asia Pasifik, Bil. 4(4), 12–24.

Moraga-Calderón, T., Buisman, H., & Cramer, J. (2020). The Relevance of Learning Quantum Physics from the Perspective of the Secondary School Student: A Case Study. European Journal of Science and Mathematics Education, 8(1), 32–50.

MOSTI. (2013). National Policy On Science, Technology & Innovation (NPSTI) Harnessing STI for Socio- Economic Transformation and Inclusive Growth (Issue July, p. 25).

MOSTI, M. of S. T. and I. (2017). Malaysian Science, Technology and Innovation Indicators Report 2016. In Ministry of Science, Technology and Innovation (MOSTI) Malaysian Science and Technology Information Centre (MASTIC).

Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics. https://doi.org/10.1119/1.1435346

Murphy, S., MacDonald, A., Danaia, L., & Wang, C. (2019). An analysis of Australian STEM education strategies. Policy Futures in Education, 17(2), 122–139. https://doi.org/10.1177/1478210318774190

Myhrehagen, H. V., & Bungum, B. (2016). “From the cat’s point of view”: Upper secondary physics students’ reflections on Schrödinger’s thought experiment. Physics Education, 51(5), 1–11. https://doi.org/10.1088/0031-9120/51/5/055009

Nur Farhana Ramli, & Othman Talib. (2017). Can Education Institution Implement STEM? From Malaysian Teachers’ View. International Journal of Academic Research in Business and Social Sciences, 7(3), 2222–6990. https://doi.org/10.6007/IJARBSS/v7-i3/2772

Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: A study in Norway. International Journal of Science Education, 24(6), 565–574. https://doi.org/10.1080/09500690110073982

Park, W., Yang, S., & Song, J. (2019). When Modern Physics Meets Nature of Science: The Representation of Nature of Science in General Relativity in New Korean Physics Textbooks. Science and Education, 28(9–10), 1055–1083. https://doi.org/10.1007/s11191-019-00075-9

Pearson, G. (2017). National academies piece on integrated STEM. Journal of Educational Research, 110(3), 224–226. https://doi.org/10.1080/00220671.2017.1289781

Polatdemir, E., Chin, Y. K., & Martinez, J. C. (2004). Teachers’ views on teaching quantum physics at junior college level Teachers’ Views On Teaching Quantum Physics At Junior College Level. ERAS Conference, Singapore, November, 746–755.

Porcaro, D. (2011). Applying constructivism in instructivist learning cultures. Multicultural Education & Technology Journal, 5(1), 39–54. https://doi.org/10.1108/17504971111121919

Portillo, E. C., Look, K., Mott, D., Breslow, R., Kieser, M., & Gallimore, C. (2020). Intentional Application of the Taba Curriculum Model to Develop a Rural Pharmacy Practice Course. INNOVATIONS in Pharmacy, 11(1), 21. https://doi.org/10.24926/iip.v11i1.2089

Ravaioli, G. (2019). Experiments and representations in quantum physics: Teaching module on the photoelectric effect and the Franck-Hertz experiment. Journal of Physics: Conference Series, 1286(1). https://doi.org/10.1088/1742-6596/1286/1/012032

Ravaioli, Giovanni, Olivia, L., & Mathematics-physics, I. (2018). Accepting quantum physics: analysis of secondary school students’ cognitive needs. ESERA 2017 Conference Dublin City, September 2019.

Richey, R. C., & Klein, J. D. (2007). Design and Development Research (L. Akers & A. Messina (eds.); 1st Editio). Lawrence Erlbaum Associates, Inc.

Ro, J. (2018). The meaning of teacher education in an exam-oriented education system: lessons from novice secondary teachers in Korea. Asia-Pacific Journal of Teacher Education, 47(4). https://doi.org/10.1080/1359866X.2018.1499013

Rodriguez, L. V. (2018). Teaching the wave- particle duality to secondary school students: an analysis of the dutch context (Issue December). University of Twente.

Satanassi, S., Levrin, O., & Ravaioli, G. (2018). Quantum computers for high school : design of activities for an I SEE teaching module.

Sayer, R., Maries, A., & Singh, C. (2017). Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics. Physical Review Physics Education Research, 13(1), 1–23. https://doi.org/10.1103/PhysRevPhysEducRes.13.010123

Schleich, W. P., Ranade, K. S., Anton, C., Arndt, M., Aspelmeyer, M., Bayer, M., Berg, G., Calarco, T., Fuchs, H., Giacobino, E., Grassl, M., Hänggi, P., Heckl, W. M., Hertel, I. V., Huelga, S., Jelezko, F., Keimer, B., Kotthaus, J. P., Leuchs, G., … Zoller, P. (2016). Quantum technology: from research to application. Applied Physics B: Lasers and Optics, 122(5). https://doi.org/10.1007/s00340-016-6353-8

Shahali, E. H. M., Halim, L., Rasul, S., Osman, K., Ikhsan, Z., & Rahim, F. (2015). Bitara-StemTM training of trainers’ programme: Impact on trainers’ knowledge, beliefs, attitudes and efficacy towards integrated stem teaching. Journal of Baltic Science Education, 14(1), 85–95.

Shi, W. Z. (2013). The effect of peer interactions on quantum physics: A study from China. Journal of Baltic Science Education, 12(2), 152–158.

Siew, N. M., Amir, N., & Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. SpringerPlus, 4(1), 1–20. https://doi.org/10.1186/2193-1801-4-8

Singh, C. (2008). Interactive learning tutorials on quantum mechanics. American Journal of Physics. https://doi.org/10.1119/1.2837812

Singh, C., & Marshman, E. (2015). Review of student difficulties in upper-level quantum mechanics. Physical Review Special Topics - Physics Education Research. https://doi.org/10.1103/PhysRevSTPER.11.020117

Sokolowski, A. (2013). Teaching the photoelectric effect inductively. Physics Education, 48(1), 35–41. https://doi.org/10.1088/0031-9120/48/1/35

Soloway, E., Jackson, S. L., Klein, J., Quintana, C., Reed, J., Spitulnik, J., Stratford, S. J., Studer, S., Eng, J., & Scala, N. (1996). Learning theory in practice: case studies of learner-centered design. Conference on Human Factors in Computing Systems - Proceedings, 189–196. https://doi.org/10.1145/238386.238476

Stadermann, H. K. E., & Goedhart, M. J. (2020). Secondary school students’ views of nature of science in quantum physics. International Journal of Science Education, 42(6), 997–1016. https://doi.org/10.1080/09500693.2020.1745926

Stadermann, H. K. E., Van Den Berg, E., & Goedhart, M. J. (2019). Analysis of secondary school quantum physics curricula of 15 different countries: Different perspectives on a challenging topic. Physical Review Physics Education Research, 15(1), 10130. https://doi.org/10.1103/PhysRevPhysEducRes.15.010130

Supurwoko, S., Cari, C., Sarwanto, S., Sukarmin, S., & Suparmi, S. (2017). The effect of Phet Simulation media for physics teacher candidate understanding on photoelectric effect concept. International Journal of Science and Applied Science: Conference Series, 1(1), 33–39. https://doi.org/10.20961/ijsascs.v1i1.5108

Sutrini, C., Malgieri, M., & de Ambrosis, A. (2019). Bubble: Experimenting with Feynman’s sum over paths approach in the secondary school. Nuovo Cimento Della Societa Italiana Di Fisica C, 42(5), 1–10. https://doi.org/10.1393/ncc/i2019-19241-4

Taba, H. (1962). Curriculum development: Theory and practice.

Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89(1), 94–116. https://doi.org/10.1002/sce.20038

Tarng, W., Lee, C. Y., Lin, C. M., & Chen, W. H. (2018). Applications of virtual reality in learning the photoelectric effect of liquid crystal display. Computer Applications in Engineering Education. https://doi.org/10.1002/cae.21957

Testa, I., Colantonio, A., Galano, S., Marzoli, I., Trani, F., & Scotti di Uccio, U. (2020). Effects of instruction on students’ overconfidence in introductory quantum mechanics. Physical Review Physics Education Research, 16(1), 10143. https://doi.org/10.1103/PhysRevPhysEducRes.16.010143

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Boeve-de Pauw, J., Dehaene, W., Deprez, J., De Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., Van de Velde, D., Van Petegem, P., & Depaepe, F. (2018). Integrated STEM Education: A Systematic Review of Instructional Practices in Secondary Education. European Journal of STEM Education, 3(1), 1–12. https://doi.org/10.20897/ejsteme/85525

Toma, R. B., & Greca, I. M. (2018). The effect of integrative STEM instruction on elementary students’ attitudes toward science. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1383–1395. https://doi.org/10.29333/ejmste/83676

Wan Norhasma, W. H., & Nurahimah, M. Y. (2019). ‘ SKPMg2 ’ (Standard 4) as tools to upgrade teachers ’ teaching quality. Journal of Educational Research and Indigeneous Studies.

White, D. W. (2014). What is STEM education and why is it important? Florida Association of Teacher Educators Journal, 1(14), 1–10.

Yaakob, M. N. (2016). Pembangunan Model Kurikulum M-Pembelajaran Teknologi Dalam Pengajaran Dan Pembelajaran Di Ipg Doctor of Philosophy. Universiti Utara Malaysia (UUM).

Zaher Atwa, Rosseni Din, & Muhammad Hussin. (2016). Effectiveness of flipped learning in physics education on palestinian high school students’ achievement. Journal of Personalized Learning, 2(1), 73–85.

Zollman, D. (1999). Research on teaching and learning quantum mechanics. Annual Meeting of National Association for Research in Science Teaching, 46.
Published
2021-05-10
How to Cite
Markus, L., Sungkim, S. and Ishak, M. Z. (2021) “Issues and Challenges in Teaching Secondary School Quantum Physics with Integrated STEM Education in Malaysia”, Malaysian Journal of Social Sciences and Humanities (MJSSH), 6(5), pp. 190 - 202. doi: 10.47405/mjssh.v6i5.774.
Section
Articles